A branch and bound algorithm for nonconvex quadratic optimization with ball and linear constraints

نویسندگان

  • Amir Beck
  • Dror Pan
چکیده

We suggest a branch and bound algorithm for solving continuous optimization problems where a (generally nonconvex) objective function is to be minimized under nonconvex inequality constraints which satisfy some specific solvability assumptions. The assumptions hold for some special cases of nonconvex quadratic optimization problems. We show how the algorithm can be applied to the problem of minimizing a nonconvex quadratic function under ball, out-of-ball and linear constraints. The main tool we utilize is the ability to solve in polynomial computation time the minimization of a general quadratic under one Euclidean sphere constraint, namely the so-called trust region subproblem, including the computation of all local minimizers of that problem. Application of the algorithm on sparse source localization problems is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A global optimization algorithm for sum of quadratic ratios problem with coefficients

In this paper a global optimization algorithm for solving sum of quadratic ratios problem with coefficients and nonconvex quadratic function constraints (NSP ) is proposed. First, the problem NSP is converted into an equivalent sum of linear ratios problem with nonconvex quadratic constraints ( LSP ). Using linearization technique, the linearization relaxation of LSP is obtained. The whole prob...

متن کامل

A range division and contraction approach for nonconvex quadratic program with quadratic constraints

This paper presents a novel range division and contraction approach for globally solving nonconvex quadratic program with quadratic constraints. By constructing new underestimating linear relaxation functions, we can transform the initial nonconvex quadratic program problem into a linear program relaxation problem. By employing a branch and bound scheme with a range contraction approach, we des...

متن کامل

Convex Relaxation Methods for Nonconvex Polynomial Optimization Problems

This paper introduces to constructing problems of convex relaxations for nonconvex polynomial optimization problems. Branch-and-bound algorithms are convex relaxation based. The convex envelopes are of primary importance since they represent the uniformly best convex underestimators for nonconvex polynomials over some region. The reformulationlinearization technique (RLT) generates LP (linear p...

متن کامل

An Algorithm Based on Theory of Constraints and Branch and Bound for Solving Integrated Product-Mix-Outsourcing Problem

One of the most important decision making problems in many production systems is identification and determination of products and their quantities according to available resources. This problem is called product-mix. However, in the real-world situations, for existing constrained resources, many companies try to provide some products from external resources to achieve more profits. In this pape...

متن کامل

Semidefinite relaxations for non-convex quadratic mixed-integer programming

We present semidefinite relaxations for unconstrained nonconvex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for mediumsized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Global Optimization

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2017